B. 1 Sedative-hypnotic drugs

a. Define and distinguish: sedation, hypnosis, anxiolysis, tolerance, REM and non-REM sleep, physical and psychological dependence.

b. Identify the major chemical classes of sedatives, hypnotics and anxiolytics.

c. Describe the pharmacodynamics of the barbiturate and non-barbiturate sedatives.

d. Describe the pharmacokinetics of commonly used barbiturates and benzodiazepines and indicate how differences between them may be applied clinically.

e. Describe individual sedative-hypnotic agents.

ethanol

- clear colourless liquid, miscible with water
- usually given orally, can be administered IV
- some is metabolized by gastric alcohol dehydrogenase (more in men)
- small Vₐ = 0.7 l/kg
- metabolized in the liver to acetaldehyde and acetic acid
 - alcohol dehydrogenase active at low BAC (< 0.10)
 - microsomal oxidation at high BAC
 - limited by NAD⁺, NADP⁺ availability
 - zero-order kinetics (~8 g/h)
- dissolves in membranes decreasing viscosity and affecting many receptors and ion channels
 - CNS depression (many complex actions)
 - ↓ cardiac contractility, smooth muscle tone, uterine contraction, platelet aggregation
 - teratogenic
- long term effects are difficult to separate from confounding variables (nutrition, smoking, social status, premorbid problems)
- interacts with other drugs acutely by reducing hepatic metabolism and with chronic use by inducing hepatic metabolism
- tolerance mainly results from cellular adaption, not increased metabolism
- cross-tolerance with other sedatives
- little therapeutic use: acute methanol poisoning, prevention of withdrawal
- dose: 10g per standard drink
 - dependent users 100-750 g/day

thiopentone

- 0.5 g in 20 ml glass ampoule
- yellow powder, sodium salt
- stabilized with anhydrous sodium carbonate 60 mg/g
- prepared with water or saline to 25 mg/ml solution
- pH 11-12. Precipitates in neutral or acid solution
- administered IV
- rapid onset of effect in CNS followed by redistribution
- hepatic metabolism
- binds GABA receptors, increasing the duration of Cl⁻ channel opening

methohexitone

- 500 mg in 50 ml glass ampoule
- white/yellow powder, sodium salt
- stabilized with anhydrous sodium carbonate
mostly αL and αD isomers. β isomers increase involuntary movement.
prepared with water or saline
ph 10.6-11.6
pharmacokinetics and actions similar to thiopentone

phenobarbitone
200 mg in 1ml ampoule
30 mg tablets
the oldest anticonvulsant
pKa = 7.4
undergoes hepatic oxidation of the C5 functional groups and conjugation with renal
clearance. 25% is excreted unchanged.
t1/2β = 4 days
binds GABA receptors increasing Cl- conductance, AMPA receptors blocking
glutamate transmission

sedative and anticonvulsant

propofol
10 mg/ml in 20, 50 and 100 ml ampoules
white aqueous isotonic emulsion
solubilized with 2.25% glycerol, 1% soybean oil, 1% purified egg phospholipid
previously solubilized in Cremaphor EL → anaphylaxis
pH 6.0 to 8.5
administered IV
rapid onset of effect in CNS followed by redistribution
rapid metabolism in liver (t1/2β 0.5-1.5 h)

diazepam
Diazemuls
1 ml of 5 mg/ml glass ampoule
solubilized in soybean oil
Diazepam USP
2 ml of 5 mg/ml brown glass ampoule
clear yellow solution
dissolved in 40% propylene glycol, 10% ethyl alcohol, 5% Na benzoate

midazolam
5 ml of 1 mg/ml or 1, 3 or 10 ml of 5 mg/ml glass ampoules
clear aqueous solution
buffered to pH 3.3
precipitates in strongly alkaline solutions

clonazepam
1 mg in 1 ml glass ampoule
2.5 mg/ml oral solution
0.5 mg and 2 mg tablets
long t1/2β ~36 h

zopiclone
7.5 mg tablets
structurally unrelated to benzodiazepines, but binds at the same site on the GABA
receptor

chloral hydrate
no longer on the Australian market
prodrug metabolized to trichloroethanol
non-specific membrane stabilizer
hepatic metabolism produces trichloroacetic acid which accumulates
possibly carcinogenic
dose 0.5-1.0 g (of 100 mg/ml solution)

chlmethiazole
8 mg/ml oral solution
192 mg capsules

Sedatives, hypnotics

James Mitchell (December 24, 2003)
5-20% bioavailability
65% protein bound
pKa 3.2
related to vitamin B,
?GABAergic, unknown mechanism

agents affecting CMR and CBF

<table>
<thead>
<tr>
<th></th>
<th>CBF</th>
<th>CMR</th>
<th>ICP autoregulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂O</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>halothane</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>enflurane</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>isoflurane 0.5MAC</td>
<td>↓</td>
<td>↓</td>
<td>0</td>
</tr>
<tr>
<td>isoflurane 2MAC</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>barbiturates</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>benzodiazepines</td>
<td>↓</td>
<td>↓</td>
<td>0</td>
</tr>
<tr>
<td>ketamine</td>
<td>↑</td>
<td>0</td>
<td>↑</td>
</tr>
</tbody>
</table>

f. Describe the anticonvulsant and proconvulsant properties of the agents.